
Digital Object Identifier (DOI) 10.1007/s00220-008-0711-2
Commun. Math. Phys. 287, 383–393 (2009) Communications in

Mathematical
Physics

Energy and Volume: A Proof of the Positivity of ADM
Energy Using the Yamabe Invariant of Three-Manifolds

Martin Reiris

Mathematics Department, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA. E-mail: reiris@math.mit.edu

Received: 28 February 2008 / Accepted: 7 October 2008
Published online: 8 January 2009 – © Springer-Verlag 2008

Abstract: We give a new proof of the positivity (non-negativity) of ADM energy1 using
the Yamabe invariant of three-manifolds. From a physical point of view, the new proof is
motivated by a formula (explicitly non-negative) for the total ADM energy of emerging
(asymptotically flat) stationary solutions on maximally expanding compact cosmolo-
gies. Mathematically, the proof is an application of the Thurston Geometrization of
three-manifolds.

Introduction

Remark 1. The Yamabe invariant of a compact three-manifold as it is used in the present
article, means the supremum over all conformal classes of three-metrics, of the infimum
of the Yamabe functional (see below) at each conformal class. In the literature, the Yam-
abe invariant is also known under the name of sigma constant [1]. Also, it is common to
call the Yamabe invariant to the infimum of the Yamabe functional on a given conformal
class [6]. Our terminology shouldn’t be confused with it.

The proof of the positivity of the ADM mass on asymptotically flat Riemannian
three-manifolds2 of non-negative scalar curvature has a rich and long history. The first
proof, given by Schoen and Yau [11] in 1979 (see also [12]), was partially motivated
to conclude the proof of the Yamabe problem. Later, in 1981, Witten [13] gave another
proof using four-spinors which explicitly displayed the non-negativity of mass through a
Bochner-type formula. In 1997, Lohkamp [7] gave a different geometric proof, studying
deformations of the scalar curvature on localized regions. More recently, the positivity
of mass has been proved through the sharper lower estimates for the mass provided by

1 Properly speaking, we give a new proof of the Riemannian positive energy Theorem. Namely, we prove
that an asymptotically flat Riemannian three-manifold with non-negative scalar curvature cannot have negative
mass.

2 We will always restrict to dimension three.
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the Penrose inequality [5]. Here, we will provide a proof of the non-negativity of mass
which in a vague sense closes a circle of concepts opened since the original proof by
Schoen and Yau motivated by the Yamabe problem. Being still a little imprecise, the
present proof shows that the non-negativity of mass is implied by the solvability of the
Yamabe problem on manifolds with non-positive Yamabe invariant and the computation
[2] (after the proof of the Thurston Geometrization Conjecture) of the Yamabe invariant
of three-manifolds, for manifolds whose Yamabe invariant is also non-positive.3

We will give thus a new proof of the following well known statement.

Theorem 1. Say (M, g) is an asymptotically flat Riemannian three-manifold of non-
negative scalar curvature. Then, if m �= 0 it is m > 0.

Remark 2. The theorem doesn’t tell (and we won’t prove) that the manifold is flat and
topologically R

3 when m = 0. By asymptotically flat we mean |∂(i)(g−gS)| = O(r−2−i )

with i = 0, 1, 2 and gS the Schwarzschild metric gS = (1 + m
2r )4(dr2 + r2d�2).

Let us give below a brief introduction of the main elements involved in the proof. We
will end up explaining the ideas behind the main argument.

Say (M, g) is a compact Riemannian three-manifold, define the Yamabe functional
on the conformal class [g] of g as

Y (g̃) =
∫

M R̃dvg̃

V
1
3

g̃

,

where g̃ is a metric in the conformal class of g, i.e. g̃ = e2 f g, Vg̃ is the volume of
M under the volume form of g̃ and R̃ the scalar curvature of g̃. Denote by λ([g]) the
infimum of Y in [g] and define the Yamabe invariant Y (M) of M as the supremum of
λ([g]) over all conformal classes [g]. A landmark in geometric analysis is the resolution
of the Yamabe problem (see [6] for a survey).

Theorem 2. (Yamabe, Aubin, Trudinger, Schoen). Say g is not conformal to the standard
sphere. Then, λ([g]) < λ(S3) and there is a metric in [g] of constant scalar curvature
reaching λ([g]).
Observe that the Yamabe functional is scale invariant therefore if g̃ realizes λ([g]) so
does any scaling of it. Observe too that if Y (M) < 0 the Yamabe invariant is equal to
minus the infimum of the two-third power of the volumes of Yamabe metrics of scalar
curvature negative one. Therefore maximizing the scalar curvature among unit volume
Yamabe metrics is equivalent to minimizing the volume among Yamabe metrics of con-
stant scalar curvature minus one. What is the relation between the signature of Y (M)

and the topology of M , and how much is its value? This question was partially answered
after the proof of the Thurston Geometrization Conjecture [3,9] via the Ricci flow. Let
us briefly review how to obtain Thurston’s geometrization on three-manifolds (see [1]
for a summary) as it is relevant to the article and to give a partial answer to the question
before. Given a three-manifold M , to obtain the geometric decomposition one first per-
forms the prime decomposition, i.e. factors M into a unique (up to reordering) connected
sum of prime three-manifolds Pi . A prime three-manifold is one which is not the three

3 It is worth to remark that (in dimension three) the Positivity Energy Theorem is needed to settle the Yam-
abe problem in the case that the infimum of the Yamabe functional on the given conformal class is positive.
Thus it is not needed to solve the Yamabe problem on manifolds with non-positive Yamabe invariant.



Energy and Volume: A Proof of the Positivity of ADM Energy 385

sphere and it is either S2 × S1 or it is irreducible (i.e. every two sphere bounds a disc).
On each one of the resulting (prime) three-manifolds one performs the torus decompo-
sition (JSJ) by excising incompressible tori (those whose fundamental group injects).
In this way we obtain a set of manifolds with toric boundaries. Thurston’s geometri-
zation asserts that each one of the resulting pieces admits a geometric structure among
eight possible [1]. In particular, after this decomposition is carried out, there is a possi-
bly empty set of manifolds with or without boundary admitting a complete hyperbolic
metric of finite volume. We will denote such summands as Hi . An important property
[8] of the prime decomposition is that if M = P1� . . . �Pm and N = P̃1� . . . �P̃n , then
M�N = P1� . . . �Pm�P̃1� . . . �P̃n , where each � denotes a connected sum. This property
will be used in Step 3 inside the proof of Theorem 1. The following partial answer to
the question above was proved in [2].

Theorem 3. Say M is a three-manifold whose Thurston decomposition has at least one
component with hyperbolic geometry. Then, Y (M) < 0 and

Y (M) = −6
(∑

V (Hi )
) 2

3
.

In this case the Yamabe invariant is only sensitive to the hyperbolic sector of the Thur-
ston decomposition. We will exploit this fact to give a proof of the positivity of mass
proceeding by contradiction and showing that if not the volume of a certain Yamabe

metric of scalar curvature negative one is below (−Y (M))
3
2 with M a three-manifold

of negative Yamabe invariant. Let us explain the main steps to carry out this program.
Roughly speaking a metric is asymptotically flat at spatial infinity if asymptotically it
looks as the Schwarzschild metric

g = 1
(
1 − 2m

r

)dr2 + r2d�, (1)

where a priori the mass m can have arbitrary signature.4 Let S(r) be the sphere of con-
stant coordinate radius r , and let n be the outgoing normal. Being spherically symmetric
the Schwarzschild metric is well known to be conformally flat. In fact defining

v = m

2

1 +
√

1 − 2m
r

1 −
√

1 − 2m
r

,

we get explicitly

g =
(

1 +
m

2v

)4
(dv2 + v2d�2),

which after the change of variables u = ln v transforms into

g = 4m2 cosh4 (u − ln m/2)

2
(du2 + d�2), (2)

if m > 0 and

g = 4m2 sinh4 (u − ln −m/2)

2
(du2 + d�2), (3)

4 We will assume throughout that the mass m is different from zero.
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if m < 0. The conformal presentation above (Eqs. (2) and (3)) clearly display the dependence
of the normal component of the Ricci curvature with respect to the signature of mass. In
fact recalling that Ric(n, n) = −2e−2 f ∂2

u f with f half the logarithm of the conformal
factor in Eqs. (2) and (3) respectively, we get

Ric(n, n) = −1

8m2 cosh6 u−ln m/2
2

,

if m > 0 and

Ric(n, n) = 1

8m2 sinh6 u−ln −m/2
2

,

if m < 0. Thus if the mass is positive the normal component of the curvature is negative
while it is positive if the mass is negative.5 We will use this fact to make a volume com-
parison. Observe that the mean curvature of a sphere S(r) (as a two-spheres embedded

in Schwarzschild space) is θ = 2
√

1− 2m
r

r . As a consequence, the surrounding geometry
of the spheres S(r) inside the Schwarzschild space gets closer and closer to the sur-
rounding geometry of the spheres SE (r) of radius r inside Euclidean space. Thus, large
spheres provide a starting point from which to compare volumes between the Schwarzs-
child and the Euclidean spaces. Let us describe this in more detail. Fix a center o in
Euclidean three-space and denote by SE (r) the two-spheres with center o and radius r .
In Schwarzschild space let d(r1, r0) (r1 < r0) be the Riemannian distance between the
spheres S(r1) and S(r0). Finally denote by VE (r, r0) the Euclidean volume lying between
the spheres SE (r) and SE (r0) and denote by VS(r1, r0) the volume lying between S(r1)

and S(r0) inside the Schwarzschild space. In the sense of the classical volume compar-
ison, one would like to compare the volumes VS(r1, r0) and VE (r0 − d(r1, r0), r0) as
r1 decreases, starting from r1 = r0, with r0 a large radius. According to the Bishop-
Gromov volume comparison, as r1 decreases the volume VS(r1, r0) increases faster than
the volume VE (r0 − d(r1, r0), r0) when m > 0 (because Ric(n, n) < 0) and slower
if m < 0 (because Ric(n, n) > 0). Let us quantify this volume comparison. From the
expansion of 1√

1−x
we get

1
√

1 − 2m
r

= 1 +
m

r
+

3

2

m2

r2 +
5

2

m3

r3 +
35

8

m4

r4 + O(r−5). (4)

The distance d(r1, r0) is estimated as

d(r1, r0) = r0 − r1 + m ln
r0

r1
+ O(r1, r0), (5)

where O(r1, r0) → 0 as r1, r0 → ∞ and the volume VS(r1, r0) as

VS(r1, r0)= �1

(
1

3
(r3

0 − r3
1 ) +

m

2
(r2

0 − r2
1 ) +

3m2

2
(r0 − r1) +

5m3

2
ln

r0

r1
+ O(r0, r1)

)

,

(6)

5 One may interpret that by saying that if m < 0 the Riemannian slice focuses into a naked singularity (at
u = ln − m/2) while if m > 0 the slice gets thickened (forming a horizon at u = lnm/2) preventing any
singularity.
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with O(r0, r1) as above and �1 the volume of the unit two-dimensional sphere. Formulas
(5) and (6) show that given r1 the difference in volume between the Schwarzschild and
Euclidean space increases to infinity if m > 0 as r0 goes to infinity (and comparing
them from r0) and to negative infinity if m < 0. As said before, we will use this fact,
proceeding by contradiction and assuming there exists an asymptotically flat metric with
negative mass, to find a Yamabe metric of constant scalar curvature negative one whose

volume is below (−Y (M))
3
2 for M certain compact three-manifold with negative Yam-

abe invariant. In other words we increase the Yamabe invariant of M . The idea is the
following. Pick a (any) compact hyperbolic manifold H . Say gH is the (unique) hyper-
bolic metric of sectional curvature −1. Scale gH to get a metric gK of sectional curvature
−K (and scalar curvature −6K ) in such a way that the local geometry is almost flat.
Pick the (hypothetical) asymptotically flat metric of negative mass and, loosely speak-
ing, place it inside H in replacement of a big ball (in the metric gK ) whose geometry is
not far from flat. In this way, as has been argued above, one obtains a new metric g� (and
a new manifold M) whose volume is substantially below the volume of (H, gK ). The
crucial point is to show that the gluing can be done with enough care to guarantee that
the Yamabe metric of scalar curvature −6K (in the conformal class of g� in M) has a
volume still below the volume of (H, gK ). It is then shown that −Y (M) > −Y (H) > 0
which gives the mentioned contradiction.

A cosmological motivation. The reasoning above aroused in the study of the long time
evolution of constant mean curvature cosmological solutions having maximal rate of
expansion, i.e. expanding as the K = −1 Robertson-Walker cosmological model does.
We mention here (sketchily) the main lines of the motivation6. For a detailed analy-
sis of the presentation below see [10]. Say H = M is a hyperbolic manifold. For any
CMC (constant mean curvature) state (g, K ), where g is a three-metric and K the sec-
ond fundamental form, define the reduced volume7 V(g, K ) = H3Vg , where H = −k

3
is the Hubble parameter. It is known that the infimum of V in the set of all CMC

states is given by (− 1
6 Y (M))

3
2 , and therefore Vin f = VgH . Define the CMC energy

as

E = 1

4πH (V − Vin f ). (7)

Say N is the lapse when we take the mean curvature k as time. Define the Newtonian
potential φ = Nk2

3 − 1. Then φ satisfies the Poisson like equation

�φ + |K |2φ = |K̂ |2,
where K̂ is the traceless part of K . Consider for simplicity an empty-matter uni-
verse which is expanding and suppose that some gravitational energy collapsed into
a set of black holes that, asymptotically in time, become asymptotically flat and away
from each other. Using the Einstein equations it is seen that the CMC energy evolves
as

d E

dσ
= − 1

4π

∫

H
Ñ |K̂ |2dvg + E,

6 Although the mathematics can be made rigorous assuming suitable hypotheses, the hypotheses themselves
are, mathematically speaking speculative [10].

7 Under the name of Reduced Hamiltonian the quantity (up to a constant) V was first introduced and studied
in the context of long time evolution by Fischer and Moncrief [4].
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where σ = − ln −k is the logarithmic time. Making the assumption that the volumes
enclosed by the black holes grow slower than 1

H2 and that at big balls surrounding them

(centers of mass) the potential is approximately φ ∼ −mi
r we get after integration by

parts that after a long time d E
dσ

∼ 0 and

E ∼
∑

mi +
∫

(∪Bi )
c
|K̂ |2(1 + φ)dvg. (8)

The formula above can be interpreted as E ∼ M + R, where M is the total mass of
the black holes and R the total energy of radiation. Observe that the expression R coin-
cides with the kinetic term in the linearized ADM energy (see [10] for a more complete
description). A remarkable fact about the formula (8) is that the energy E on the left-hand
side is explicitly positive (because of its definition in (7)). This is the fact that inspired
the present proof of the positivity of mass.

Proof of Theorem 1. As it was explained in the introduction, we will proceed by con-
tradiction and assume we have an asymptotically flat Riemannian manifold (M, g) with
non-negative scalar curvature and negative mass. We will use fresh notation in this
section. Fix any compact hyperbolic three-manifold H , with hyperbolic metric gH of
sectional curvature minus one having volume V (H). The proof of Theorem 1 is made
in four steps. In the first three steps we will assume that outside a compact set in M
the metric g is exactly Schwarzschild. We will explain in the fourth step the necessary
modifications to account for the general case. The first step consists in gluing the metric
g to a hyperbolic metric gK of sectional curvature −K in the hyperbolic disc model,
carefully controlling the quotient −R/(6K ) with R the scalar curvature of the resulting
Riemannian metric. Once this is done we place it inside the hyperbolic manifold H
with metric 1

K gH of sectional curvature −K . Call the resulting Riemannian manifold
(M�H, g�). The second step proceeds to construct a barrier for the solution φ of the
Yamabe problem (with scalar curvature −6K ) with base metric g�. In the third step we
show, using the barrier found in the second step, that the volume of (M�H, φ4g�) is
below the minimum possible provided by the Yamabe invariant of M�H .
Step 1. As said we assume that outside a compact set in M the metric g is of the form

g =
(

1 +
m

2r

)4
(dr2 + r2d�2). (9)

Recall that the disk representation of a hyperbolic space of sectional curvature −K (and
therefore scalar curvature −6K ) is

gK = 1
(

1 − Kr2

4

)2 (dr2 + r2d�2). (10)

We represent a conformally flat metric by e2 f gF with gF = dr2 + r2d�2 a flat metric.
We start the gluing of the metrics (9) and (10) by linearly deforming the exponent f
from some radius r0 to some radius r1. A schematic representation can be seen in Fig. 1.

Denote by fS and fK half the logarithm of the conformal factors in the metrics (9)
and (10) respectively, namely

fK = − ln

(

1 − Kr2

4

)

,
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Fig. 1. A schematic representation of the gluing

and

fS = 2 ln
(

1 +
m

2r

)
.

Denote by fL the linear function tangent to fS at r0. There are unique K and r1 such
that fL is tangent to fK at r1. We get them solving the system of equations

−m

r2
0

(
1 + m

2r0

) = Kr1

2

(

1 − Kr2
1

4

) , (11)

− ln

(

1 − Kr2
1

4

)

= − m

r2
0

(
1 + m

2r0

) (r1 − r0) + 2 ln

(

1 +
m

2r0

)

. (12)

We display now the dependence of r1 and K with respect to r0 and m. Make δ = r1/r0.
From Eq. (11) we get

1
(

1 − Kr2
1

4

) = −δ
m

2r0

1
(

1 + m
2r0

) + 1.

Putting this into Eq. (12) and making U = 1 + m
2r0

we get

ln

(

δ
1 − U

U
+ 1

)

− ln U 2 = 2
1 − U

U
(δ − 1),

and rearranging terms

ln
(
δ 1−U

U + 1
) 1

U 2

2 1−U
U

= δ − 1.

When r0 → ∞, U → 1 and δ → 4 (use the equivalent ln x ∼ x − 1 as U tends to one).
Note that K ∼ − 2m

δr3
0

as r0 → ∞.
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Let R be the scalar curvature of e2 fL gF considered in the domain where r lies between
r0 and r1. As will be explained in Step 2 we need to estimate the maximum value of
−R/(6K ) in the interval [r0, r1], we do that below. Being spherically symmetric, the
scalar curvature R is expressed as

R = −4e−2 f
(

f ′′ +
2 f ′

r
+

f ′s2

2

)

, (13)

where ′ = d
dr . Thus, as f = fL is linear and increasing, −R is a decreasing function of

r in the interval [r0, r1]. Therefore −R/6K is maximum at r0. We have

−R(r0) = 4e2 f (r0)

⎛

⎜
⎝− 2m

r3
0

(
1 + m

2r0

) +
m2

2r4
0

(
1 + m

2r0

)2

⎞

⎟
⎠

= 16e2 f (r0) (1 − U )

r2
0 U

(

1 +
(1 − U )

2U

)

.

From Eq. (11) we get

K = 4δ
(1 − U )

U

1

r2
1

1
(
1 + δ

U (1 − U )
) .

Thus −R/(6K ) → (2/3)δ → 8/3 as r0 → ∞. So far we constructed a C1 exponent, to
get a smooth exponent (that we will denote f̄ ) in the conformal factor (e2 f̄ ) we need to
deform (slightly) the functions fL and fS at r0 and the functions fL and fK at r1. As will
be explained later we want to do so without changing much the maximum of 8/3 for the
quotient −R/(6K ). This is a delicate operation as the scalar curvature Equation involves
the second derivative of f . Let us explain how the deformation is performed at r0. The
deformation at r1 proceeds along similar lines. Pick a function ξ of one variable, positive
and symmetric around the origin with support in [−1, 1] and total integral one. Define
the kernel ξε = 1

ε
ξ( x

ε
). Say f is the function equal to fS before r0 and the function

fL after r0. We smooth it out by convolving it with the kernel ξε , i.e. we consider the
function

f̄ (r) =
∫

f (t)ξε(r − t)dt.

Integrating by parts we get f̄ ′(r) = ∫
f ′(t)ξε(r−t)dt and f̄ ′′(r) = ∫ r0 f ′′(t)ξε(r−t)dt

(note that f ′′(r) = 0 if r > r0). This shows that given β there is γ such that we can mod-
ify f on [r0 − γ, r0 + γ ] to get | f̄ − f (r0)| ≤ β, | f̄ ′ − f ′(r0)| ≤ β on [r0 − γ, r0 + γ ]
while making the second derivative f̄ ′′ increasing (observe that f ′′

S is increasing). In
particular we can see from Eq. (13) that, up to β, −R/(6K ) passes from zero to 8/3 in
the interval [r0 − γ, r0 + γ ]. This finishes the construction.

Summarizing, we have constructed a metric on M equal to g until r0 −γ , hyperbolic
of sectional curvature −K after r1 + γ and conformally flat with linear exponent in the
conformal factor in the interval [r0 +γ, r1 −γ ] in such a way that the quotient −R/(6K )

has a maximum in M approaching 8/3 as r0 tends to infinity if we choose γ (r0) → 0
as r0 → ∞ conveniently.

We place now the metric constructed above inside the scaled hyperbolic mani-
fold (H, 1

K gH ). Observe that the annulus [r1 + γ, r1 + 1] is isometric to an annulus
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B(p, s1)/B(p, s0) in (H, 1
K gH ), where B(p, s) denotes a ball centered at p and of

radius s in (H, 1
K gH ). After excising the ball B(p, s0) we identify both annulus by the

given isometry, thus constructing a new manifold denoted as M�H and a Riemannian
metric on it denoted as g�.
Step 2. We study now the constant scalar curvature equation

6Kφ5 = 8�φ − R�φ, (14)

for a metric gY = φ4g�. We will construct an upper barrier φT for the solution φ allowing
us to estimate the total volume of (M�H, gY ). Let φK be the conformal factor such that
φ4

K g� = gK on [r0 −2γ, r1 +1]. Define the upper barrier φT to the solution φ of Eq. (14)
as (we will prove soon this is actually a barrier)

φT =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i) 1 on the H − side of the two − sphere {r = r1},
ii) φK (r) for r in [r0 − 2γ, r1 + 1],
iii) in such a way that F = 6Kφ5

T + R�φT − 8�φT ≥ 0,

for r in [r0 − 3γ, r0 − 2γ ],
iv) φT (r0 − 2γ ) ≤ φT (constant) ≤ φT (r0 − 2γ ) + γ,

on the M − side of {r = r0 − 3γ }.

(15)

The construction in the third step in the definition (15) above can be done follow-
ing the next argument. For a function φT depending only on the radius, write8 �φ =

1
A(s) (A(s)φ′

T (s))′, where s is the radial distance, i.e. ds
dr = (1 + m

2r )2, A(s) is the area

of the two sphere with s constant and ′ = d
ds . For r > r0 − 2γ we have defined φT as

φT = φK therefore

φT = 1
(

1 − Kr2

4

) 1
2 (

1 + m
2r

)
, (16)

for r greater but close to r0 − 2γ . A straightforward computation gives φ′
T r0 − 2γ ) ∼

m( 1
2 − 1

2δ
) 1

r2
0

< 0 as r0 → ∞. Pick a function of one variable ξ , being zero for x < −1

and one for x > 0 with a graph as is represented in Fig. 2. Define φT on [r0−3γ, r0−2γ ]
by running the ODE

(A(s)φ′
T (s))′ = ξ

(
r − (r0 − 2γ )

γ

)
6Kφ5

K (s)A(s)

8

backwards and starting from r0 − 2γ . Say that at r = r0 − 2γ and at r = r0 − 3γ it is
s = s0 and s = s1 respectively. We have

A(s)φ′
T (s) = A(s0)φ

′
T (s0) −

∫ s0

s

1

8
A(s)ξ

(
r − (r0 − 2γ )

γ

)

6Kφ5
K (s)ds. (17)

Fix � (see Fig. 2) in such a way that A(s1)φ
′
T (s1) = 0. Then it is φ′

T = 0 and φT
constant for s < s1. Observe that from Eq. (17) it is φ′

T ≤ 0 and consequently φT is
increasing in the decreasing direction of s. Therefore

F = 6Kφ5
T + R�φT − 8�φT = 6Kφ5

T − 8

A
(Aφ′

T )′ ≥ 6Kφ5
K (s0)(1 − ξ) ≥ 0.

8 This formula can be seen easily by integration by parts in a region between two spheres (say S(s1) and
S(s)) and then differentiating with respect to s.
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Fig. 2. A schematic representation of ξ

This finishes the construction. Note that φT ≥ 1 everywhere. To show that φT is an upper
barrier for φ, we proceed by contradiction and assume that the infimum of φT − φ is
less than zero. Then at the point q where it takes place it is φ(q) > φT (q) ≥ 1. From
the equation

8�(φT − φ) = 6K (φ5
T − φ5) + R�(φT − φ) − F,

we get

6K (φ5
T (q) − φ5(q) +

R�

6K
(φT (q) − φ(q))) ≥ F(q) ≥ 0. (18)

Express φ5
T − φ5 as (φT − φ)(φ4

T + φ3
T φ + φ2

T φ2 + φT φ3 + φ4). Plugging it into Eq. (18)
gives

6K (φT (q) − φ(q))

(

(φ4
T + φ3

T φ + φ2
T φ2 + φT φ3 + φ4)(q) +

R�

6K

)

≥ 0.

The factor
(
(φ4

T + φ3
T φ + φ2

T φ2 + φT φ3 + φ4)(q) + R�

6K

)
is greater or equal to 5 − 8/3

as r0 goes to infinity, thus if r0 is chosen sufficiently large φT (q) ≥ φ(q) which gives a
contradiction.
Step 3. We compare now the volumes of V (M�H, gY ) and V (H, 1

K gH ). Fix a coordi-
nate radius r = r2 with s = s2. We observe that the ball B(p, s2) in (H, 1

K gH ) and the
compact side of the two sphere r = r2 in (M, g) have bounded volume as r0 → ∞.
Also observe that because φT → 1 as r0 → ∞, the volume of the annulus [r2, r1] in
(M�H, gY ) minus the volume of annulus B(p, s1)/B(p, s2) in (H, 1

K gH ) tends to −∞
as r0 tends to ∞. Thus for r0 sufficiently large it is V (M�H, gY ) < V (H, 1

K gH ).
Now the manifold M�H has (independently of the nature of M) the hyperbolic piece

H in its Thurston decomposition. Therefore by Theorem 3 it must be V (M�H, gY ) ≥
V (H, 1

K gH ), which is absurd. This finishes the proof of Theorem 1 in the case the metric
g is exactly Schwarzschild outside a compact set in M .
Step 4. We treat now the case when the metric g is not exactly Schwarzschild outside a
compact set. We start by introducing a notation. We say that a function h is an O(r−α)
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as r0 → ∞ if sup{h/r−α} is bounded as r0 → ∞. Now we observe that the argument
carried out in steps one, two and three above can be repeated if we can (slightly) deform

the metric g to a metric g̃ inside the annulus [r0 −r
1
2 +ε

0 , r0] to get an exact Schwarzschild
metric of mass m after r0 in such a way that Rg̃ is an O(r−3−2ε) as r0 → ∞ and in
particular with sup{−Rg̃/r3} tending to zero as r0 tends to ∞. Let ϕ be a smooth non-
negative function of one variable x with range in [0, 1], being one for x < 0 and zero

for x > 1. Consider the metric g̃ = gS + ϕ

(
r−r0+r

1
2 +ε

0

r
1
2 +ε

0

)

(g − gS). Write ∇̃ = ∇S + �.

A computation gives

Rg̃ = Ric(S)αβ g̃αβ − 1

2
g̃αβ∇S

α∇S
β ln |g̃| + �ν

µρ�
ρ
νρ̄ g̃µρ̄, (19)

where
√|g̃| is the quotient of the volume forms of g̃ and gS , i.e. dvg̃ = √|g̃|dvgS . The

Christoffel symbols � are computed as

�
µ
αβ = 1

2
(∇S

α (g̃βm − g(S)βm) + ∇S
β (g̃αm − g(S)αm) − ∇S

m(g̃αβ − g(S)αβ))g
mµ
S .

(20)

Substituting g̃ − gS for (ϕ)(g − gS) in Eq. (20) it is seen that � and ∇S� are O(r− 5
2 −ε)

and O(r−3−2ε) as r0 → ∞ respectively. This implies that the last term of Eq. (19)
is an O(r−5−2ε) as r0 → ∞. To analyze the second term in Eq. (19) we recall that
�ν

νρ = ∂ρ ln
√|g̃|, which makes it an O(r−3−2ε) as r0 → ∞. The first term in Eq. (19)

is seen to be an O(r−5) as r0 → ∞ by noting that it can be written as Ric(S)αβ(g̃αβ −
g(S)αβ). ��
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